
About Me

Performance
Engineering

©2016 CodeKaram3

©2016 CodeKaram4

Performance
Requirements

Ask Questions

©2016 CodeKaram6

•What makes the users happy?

•What makes them unhappy?

•Any current issues that need to be tackled?

Define and Understand

©2016 CodeKaram7

•Understand QoS (Quality of Service) for end users

•Define QoS success metrics in measurable terms

• Those are the service level agreements (SLAs)!

©2016 CodeKaram8

•Document, understand and prioritize SLAs

• Throughput

• Response time

• Capacity

• Footprint

• CPU utilization?

• …

Define Success!

©2016 CodeKaram9

Monitor, measure and define performance in

terms of throughput, latency, capacity,
footprint, utilization …

Work For It!

Defining Success!

©2016 CodeKaram11

©2016 CodeKaram12

Throughput

©2016 CodeKaram13

•Expected throughput?

•Can you fall below the expected throughput?

•How long can you stay below the expected throughput?

•What is the lowest that you can go?

Throughput

©2016 CodeKaram14

•Throughput measurement

•How is it measured?

• Transactions/sec; messages/sec or all of them?

•Where is it measured?

• Client-side; server-side; browser?

©2016 CodeKaram15

©2016 CodeKaram16

Response Time

©2016 CodeKaram17

•Expected response time?

•Can you go above the expected response time?

•How long can you stay there?

•How much can you exceed?

Response Time

©2016 CodeKaram18

•Response time measurement

•How is it measured?

• 99th percentile; 5-9s; worst-case; or all?

•Where is it measured?

• Client-side; server-side? Complete loop?

©2016 CodeKaram19

©2016 CodeKaram20

©2016 CodeKaram21

Capacity Management

©2016 CodeKaram22

•What is the expected load?

•What happens if one system gets loaded more than others?

(load balancer issue)

•How is it measured?

Capacity Management

©2016 CodeKaram23

•What’s the max load that a system and all systems can tolerate?

•How long?

•What metrics are being captured?

Performance Analysis

Performance Analysis
^

Performance Analysis

©2016 CodeKaram26

• Analyze what factors enable the end-user experience to
meet or exceed the promised QoS

• Track your SLAs!

Java Application Stack

©2016 CodeKaram27

OS

Hardware

Application Ecosystem

Application

JRE

JVM

©2016 CodeKaram28

• Application services
• Application server
• Database
• Any other services in the ecosystem?

Application Performance Analysis

Application Ecosystem

Application

JVM + Runtime Performance Analysis

©2016 CodeKaram29

JRE

JVM

• Classloading stats
• JIT Compilation stats
• Garbage Collection stats
• Threads stats

OS Performance Analysis

©2016 CodeKaram30

• System/ Kernel stats
• Lock stats
• Threads stats

OS

Hardware Performance Analysis

©2016 CodeKaram31

• Memory bandwidth/ traffic/ consumption
• CPU/ core utilization
• CPU cache efficiency/ utilization/ levels
• Architectural specific?
• IO Stats

Hardware

What are You Trying to Achieve?

©2016 CodeKaram32

Improve application?

Top-Down Approach

©2016 CodeKaram33

OS

Hardware

Application Ecosystem

Application

JRE

JVM

Top Down Approach - Process

• Step 1Monitor

• Step 2 Profile

• Step 3Analyze

• Step 4 Tune +
Apply

©2016 CodeKaram34

What are You Trying to Achieve?

©2016 CodeKaram35

Improve the platform?

Bottom-Up Approach

©2016 CodeKaram36

OS

Hardware

Application Ecosystem

Application

JRE

JVM

Bottom Up Approach - Process

• Step 1Monitor

• Step 2 Profile

• Step 3Analyze

• Step 4 Tune +
Apply

©2016 CodeKaram37

Top-Down Approach

Top-Down Approach

©2016 CodeKaram39

I HAVE the power!!

… to modify the code

Top-Down Approach

©2016 CodeKaram40

OS

Hardware

Application Ecosystem

Application

JRE

JVM

Top-Down Approach

©2016 CodeKaram41

Application Ecosystem

Application

OS

Hardware

JRE

JVM

Platform

Step 1: Monitor

©2016 CodeKaram42

Monitor and plot SUT (System Under Test) statistics

©2016 CodeKaram43

Step 1: Monitor

©2016 CodeKaram44

Step 1: Monitor

©2016 CodeKaram45

Step 1: Monitor

©2016 CodeKaram46

Step 1: Monitor

©2016 CodeKaram47

Step 1: Monitor

©2016 CodeKaram48

•Tools?

• VisualVM, Java Flight Recorder

• PrintCompilation, PrintGCDetails (+PrintGCDateStamps), jmap –

clstats, jcmd GC.class_stats

Step 1: Monitor

©2016 CodeKaram49

•Tools?

• Linux – mpstat, sysstat – iostat,pidstat…, prstat, vmstat, dash, CPU-Z,

cacti …

• Windows – Performance Monitor, Task Manager, Resource Monitor,

CPU-Z, cacti ...

Step 1: Monitor

Step 2+3: Profile + Analyze

©2016 CodeKaram50

• You have all the data that you need!
• Identify areas of improvement
• Profile those potential hotspots
• Analyze those hotspots

©2016 CodeKaram51

•Tools? (Free/Open source/GPL/BSD)

• Oracle Solaris Studio Performance Analyzer, perf tools, PAPI, Code XL,

Dtrace, Oprofile, gprof, LTT (linux trace toolkit)

• Java Application – VisualVM, Netbeans profiler, jconsole …

Step 2+3: Profile + Analyze

Step 4: Tune

©2016 CodeKaram52

• Tune the JVM/GC – select the right heap, the right
GC algorithm
• Age objects appropriately
• Promote only long-lived objects
• GC worker threads per VM (for stop-the-world

GC events)
• GC concurrent worker threads per VM

Step 4: Tune

©2016 CodeKaram53

• Tune the JVM/GC – select the right heap, the right
GC algorithm
• See if compressed oops can be helpful
• Larger heaps may need AlwaysPretouch to be

enabled and also UseLargePages of
appropriate size

Step 4: Tune

©2016 CodeKaram54

• Tune your code to meet or exceed your SLAs
• Appropriate ramp-ups and ramp-downs
• Object age and retention strategies
• Understand what forms your LDS (live data

set)
• Confirm you are measuring the right thing! J

Bottom-Up Approach

Bottom Up Approach

©2016 CodeKaram56

I NEED the power!!

… to stress the platform

Top-Down Approach

©2016 CodeKaram57

OS

Hardware

Application Ecosystem

Application

JRE

JVM

Top-Down Approach

©2016 CodeKaram58

Application Ecosystem

Application

OS

Hardware

JRE

JVM

Platform

Where to Start?

©2016 CodeKaram59

•Know what you are stressing

•Get/ write the appropriate workload/ application

•Get/write the appropriate tools

Know What You Are Stressing!

©2016 CodeKaram60

CPU –
Gather performance counter information for your
CPU stats, core stats, cache hits, misses and levels,
branch predictions, pipeline information, order-of-
execution, load-store unit load and queues, etc

Know What You Are Stressing!

©2016 CodeKaram61

Memory –
Gather performance counter information for
memory utilization, memory bandwidth, read-write
stats, max read bandwidth, max write bandwidth,
max cross traffic bandwidth, architectural related
considerations, max capacity, etc

Know What You Are Stressing!

©2016 CodeKaram62

JVM / GC–
Gather information related to the change – e.g. new
GC!
Gather information on different GC phases, parallel
work queues and work performance, concurrent
work and pressure, internal queues and buffers, any
GC work that’s staged?, etc

Know What You Are Stressing!

©2016 CodeKaram63

JVM / GC–
Gather information related to the change – e.g. new
GC!
Gather information on different GC phases, parallel
work queues and work performance, concurrent
work and pressure, internal queues and buffers, any
GC work that’s staged?, etc

Where to Next?

©2016 CodeKaram64

•Know what you are stressing

•Get/ write the appropriate workload/ application

•Get/write the appropriate tools

Let’s have some fun!

Further Reading

www.codekaram.com
www.slideshare.net/monicabeckwith

